本文作者:独特魅力

微软开源最强小参数大模型—Phi-3 Mini

独特魅力 2024-04-24 839
微软开源最强小参数大模型—Phi-3 Mini摘要: 一个月前这台寂寞的街头健身器械还不知道自己身上究竟会发生些什么一个月后的现在如果你看到它时耳边并未自动播放那首脍炙人口的中文说唱歌曲眼前也没有浮现那个男人蠕动的身影那么恭喜你你纯净...

一个月前,这台寂寞的街头健身器械还不知道自己身上究竟会发生些什么。一个月后的现在,如果你看到它时耳边并未自动播放那首脍炙人口的中文说唱歌曲,眼前也没有浮现那个男人蠕动的身影,那么恭喜你,你纯净的记忆宫殿至少能让几百万网友羡慕不已。你不会知道,这个看似平平无奇的地点,为什么会被称为“成都迪士尼遗...

声明:本文来自于微信公众号AIGC开放社区(ID:AIGCOPEN),作者:AIGC开放社区,授权 转载发布。

4月23日晚,在 开源了小参数的大语言模型——Phi-3-mini。

据悉,Phi-3-mini是微软Phi家族的第4代,有预训练和指令微调多种模型,参数只有38亿训练数据却高达3.3T tokens,比很多数百亿参数的模型训练数据都要多,这也是其性能超强的主要原因之一。

Phi-3-mini对内存的占用极少,可以在 iPhone14等同类手机中部署使用该模型。尽管受到移动硬件设备的限制,但每秒仍能生成12个tokens数据。

值得一提的是,微软在预训练Phi-3-mini时使用了合成数据,能帮助大模型更好地理解语言架构、表达方式、文本语义理解、逻辑推理以及特定业务场景的专业术语等。

开源地址:https://huggingface.co/collections/microsoft/phi-3-6626e15e9585a200d2d761e3

Ollama地址:https://ollama.com/library/phi3

技术报告:https://arxiv.org/abs/2404.14219

2023年6月,微软首次推出了专用于Python编码的模型Phi-1,只有13亿参数却在编程领域击败了GPT-3.5等知名模型,这让微软看到小参数模型的广阔发展空间。

随后在Phi-1基础之上,微软推出了具备推理、文本生成、内容总结、起草邮件的大语言模型Phi-1.5,成为当时最强小参数模型之一。

2023年12月,微软在Phi-1.5基础之上开发了Phi-2,参数只有27亿并且在没有人类反馈强化学习和指令微调的情况下,击败了130亿参数的Llama-2和70亿参数的Mistral;在编码和数学测试中,Phi-2的性能甚至超过了700亿参数的Llama-2。

本次发布的Phi-3系列集合了之前三代所有的优秀技术特征,并使用了海量高质量数据集、创新的训练、微调方法,使其成为目前最强的开源小参数模型。

Phi-3-mini架构简单介绍

Phi-3-mini采用了transformer架构,支持4K和128K上下文窗口,也是同类小模型中第一个支持128K的开源产品。

微软开源最强小参数大模型—Phi-3 Mini

高质量训练数据集是Phi-3-mini性能超强的重要原因之一,微软使用了3.3T tokens数据集包括:经过严格质量筛选的网络公开文档、精选的高质量教育数据和编程代码;

通过合成数据创建的教科书式数据,例如,数学、编码、常识推理、世界常识、心理科学等;

高质量聊天格式的监督数据,涵盖各种主题以反映人类在不同方面的偏好,例如,遵循指令、真实性、诚实性等。

在训练策略方面,为了帮助Phi-3-mini更好地吸收合成数据,微软使用了迭代训练策略:初始阶段,Phi-3-mini使用了公开网络数据,学会了基本的语法、语义和上下文理解;

迭代阶段,将合成数据与网络数据合并构建全新的训练集,并对Phi-3-mini进行迭代训练,进一步强化模型的理解和生成能力,并且进行多次重复训练。

测试数据方面,Phi-3Mini在MMLU、GSM-8K、MedQA、BigBench-Hard等知名基准测试平台中,对语言理解、逻辑推理、机器翻译、编码等进行了综合测试。

结果显示,Phi-3-mini仅通过少量样本提示,在语言理解、编码、数学的性能超过了参数更大的模型,整体性能非常出色。

微软表示,在未来几周内还会发布70亿参数的Phi-3-small和140亿参数的Phi-3-medium两款小模型。其中,Phi-3-medium的性能可媲美Mixtral8x7B 和GPT-3.5,资源消耗却更少。

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

阅读
分享